COPPER NORTH ANNOUNCES EXPLORATION PROGRAM AT REDSTONE PROPERTY, NORTHWEST TERRITORIES

Vancouver, British Columbia – Copper North Mining Corp. (“Copper North” or the “Company”) (TSX.V: COL) announces the planned exploration program at the 100% owned Redstone Property (“Redstone”), Northwest Territories, Canada.

Redstone Property

The Redstone Property is comprised of five mining leases and 13 mineral claims in the Nahanni Mining District, which extend northwest-southeast for approximately 180 kilometres across a district of known sedimentary rock-hosted copper deposits.

Exploration Program

The planned exploration program, comprising geological mapping, geophysical surveying, geochemical sampling and prospecting will commence in July 2012. Geophysical work will include Induced Polarization (“IP”) surveys and additional ground-based Extremely-Low Frequency-Electromagnetic (“ELF-EM”) surveys.

The program will focus on assessing the lateral and vertical extent of copper mineralization around known mineral occurrences and newly-delineated prospective areas. Geophysical surveys will be guided by detailed geological mapping of the structures and stratigraphy that control the location of copper mineralization.

Previous field work has been successful in identifying stratiform copper mineralization, structures and stratigraphy using IP surveys at the Coates Lake deposit. Further exploration is intended to locate potential chargeability and resistivity anomalies associated with copper mineralization, particularly in areas that are covered by overburden. The ground-based ELF-EM system is highly portable, requiring no cut grids or wire loops and is a low-cost means of providing electrical resistivity data to depths of up to one to two kilometres. The ELF-EM data is relatively rapid to collect and will allow follow-up IP surveys to be more strategically located.
Copper North has been working closely with the Mineral Deposit Research Unit, University of British Columbia to improve regional and deposit scale exploration strategies at Redstone. The collaboration has enabled the Company to plan a focused field campaign, which will primarily test potential deposit extensions at the high-grade, Coates Lake deposit; as well as significantly increasing the Company’s understanding of the regional prospectivity of the project.

Dr. Sally Eyre, President and Chief Executive Officer commented “we’ve significantly increased our understanding of the regional geology and mineral deposit genesis within the Redstone Copperbelt – which remains one of the largest and least explored, sedimentary rock-hosted copper belts in the world. We are in a unique position to maximize our exploration campaign this summer”.

The Coates Lake deposit and copper occurrences in the Hayhook Basin, which are both located within the Redstone Copperbelt, can be classified as sedimentary rock-hosted stratiform copper deposits and are geologically similar to the large, well known copper deposits of the Kupferschiefer in north-central Europe; and the copper deposits of the Central African Copperbelt in the Republic of Zambia and Democratic Republic of Congo.

The copper occurrences at the Johnson Vein and Hidden Valley properties which are also located within the Redstone Copperbelt, exhibit different characteristics and can be classified as carbonate rock-hosted, polymetallic Cu-Ag-Zn-Bi-Co deposits.

The exploration program will be supervised by Mr. Jack Milton (M.Sc.), a University of British Columbia Ph.D. candidate currently working on the Redstone Copperbelt project. The geophysical and geochemical sampling work will be carried out by Aurora Geosciences Ltd.

The planned exploration is expected to cost an estimated $0.8 million. As at December 31, 2011, the Company had a cash balance of $1.88 million.

Objectives

The 2012 exploration program will focus on the Coates Lake deposit, Johnson Vein, Hayhook Basin and Hidden Valley areas of the property. The key objectives of the program include: testing the potential extensions to the Coates Lake deposit by IP and ELF-EM ground geophysical surveys and geochemical surveys; to conduct soil geochemical surveys, biogeochemical surveys, IP surveys and ELF-EM surveys on the Johnson Vein, Hayhook Basin and Hidden Valley claims and leases; and to define new regional exploration targets by prospecting and stream sediment sampling.
Coates Lake deposit

The Coates Lake deposit is a stratiform, sedimentary rock-hosted copper deposit that is located 116 kilometres north-east of the Cantung mine, Tungsten, Northwest Territories. At Coates Lake, mineralization comprises a high-grade, laterally continuous zone that has a demonstrated strike-length of over 6,000 metres and extends down-dip for at least 2,400 metres. The Coates Lake deposit is open to the north, where the prospective stratigraphy is inferred to extend beyond the limit of historic drilling, beneath the cover of glacial sediments. The Coates Lake deposit is also open at depth to the west and southwest.

Hayhook Basin

The Hayhook Basin is located approximately 80 kilometres NNW of Coates Lake. The Hayhook Basin has over ten known copper occurrences and contains the prospective stratigraphy for laterally-continuous, reduced-facies, stratiform copper-silver deposits. Much of the prospective stratigraphy in the Hayhook Basin is covered by glacial sediments. Therefore, field work in 2012 is intended to target potential anomalies associated with bed-rock mineralization under the overburden. Grab samples of chalcocite-rich dolostone from the 2010 field season have returned grades of over 13.8% copper and 15.6 g/t silver.

The potential quality and grade of the mineral occurrence at Hayhook Basin is conceptual in nature. There has been insufficient exploration to date to define a mineral resource and it is uncertain if future exploration will result in the target being delineated as a mineral resource.

Johnson Vein

The Johnson Vein is a carbonate rock-hosted, fault-related, polymetallic vein Cu-Ag-Zn-Ni-Co occurrence located on a lease approximately 40 kilometres NNW of Coates Lake. Two grab samples from the 2011 field season taken from historic trenches of massive to semi-massive sulphide rock, returned grades of 16.25% Cu, 21.1 g/t Ag, 0.07% Zn, 0.16% Ni, 0.026% Co (sample a); and returned grades of 20.1% Cu, 123 g/t Ag, 0.16% Zn, 0.23% Ni, 0.041% Co (sample b). The Johnson Vein has never been drilled and can be traced laterally as talus for at least 450 metres.

The potential quality and grade of the mineral occurrence at the Johnson Vein is conceptual in nature. There has been insufficient exploration to date to define a mineral resource and it is uncertain if future exploration will result in the target being delineated as a mineral resource.
Hidden Valley

The Hidden Valley lease, approximately 30 kilometres NW of Coates Lake, covers an area that contains vuggy, hydrothermal dolomite-calcite-quartz-tetrahedrite-chalcopryite-pyrite breccias that are related to faults within carbonate rocks. Copper sulphides occur as massive lenses, pods or disseminated tetrahedrite-chalcopryite. Although not representative of the breccia rock mass as a whole, samples of massive tetrahedrite lenses from the 2011 field season have returned grades as high as 35.0% Cu, 1800 g/t Ag, 0.65% Zn and 0.45% Bi.

The potential quality and grade of the mineral occurrence at Hidden Valley is conceptual in nature. There has been insufficient exploration to date to define a mineral resource and it is uncertain if future exploration will result in the target being delineated as a mineral resource.

Qualified Person

This news release has been prepared under the supervision of, and approved by Gary Vivian, M.Sc., P. Geo., who serves as the Qualified Person under National Instrument 43-101. Mr. Vivian is the President of Aurora Geosciences Ltd., a Company which was been engaged by Copper North to provide Geological, Geophysical and Logistical Field Services in the Northwest Territories.

QA/QC

Grab samples mentioned in this news release were collected, described and numbered in the field during daily traverses during the 2010 and 2011 field seasons. Sample locations were recorded digitally by handheld, non-differential GPS. GPS co-ordinates, sample numbers and descriptions were also documented in a field notebook at each location for data quality assurance. In camp, all field documentation was transcribed into a digital spreadsheet. Samples were placed in sealed, plastic rock pails, which were then flown out to Norman Wells during 2010 and Fort Simpson during 2011. Samples were stored with North Wright Airways Ltd. and South Nahanni Airways Ltd. respectively, until the end of each field season. Samples were then shipped to Yellowknife to be stored with Aurora Geoscience Ltd. and subsequently shipped to Jack Milton at the University of British Columbia. Samples were trimmed with a rock saw to remove oxidized material when possible. Samples were then taken, by Jack Milton, to the independent ALS Minerals laboratories in North Vancouver (“the Laboratory”) for geochemical analysis.

All samples mentioned in this news release were crushed, split, pulverized and analyzed by ALS Minerals method ME-MS61 (HF-HNO3-HClO4-HCl [4-acid] digestion of a 0.25 g sample followed by inductively coupled plasma atomic emission spectrometry [ICP-AES] and inductively coupled plasma mass spectrometry [ICP-MS]) for 48 elements, including Ag, Bi, Cu, Co, Ni and Zn. Samples that returned copper values greater than 10,000 ppm and/or silver values greater than 100 ppm but less than 1,500 ppm were re-submitted to the Laboratory and these elements
were reported by 4-acid digestion followed by a variable ICP-AES or atomic absorption spectroscopy finish (Cu-OG62 and Ag-OG62 methods, ALS Minerals). Samples that returned silver values greater than 1,500 ppm were re-submitted to the Laboratory and silver was reported by a 30 g charge fire assay and gravimetric finish (Ag-GRA21 method, ALS Minerals). The ALS Minerals, ALS Canada Ltd. laboratory in North Vancouver, B.C., is an independent analytical facility that is individually certified to standards within ISO 9001:2008 and has received accreditation to ISO/IEC 17025:2005 from the Standards Council of Canada (SCC) for methods: ME-MS61, Cu-OG62, Ag-OG62 and Ag-GRA21.

Blind field duplicates of rock samples were submitted to the Laboratory at a rate of approximately 1 in 10 samples and standard reference materials were submitted to the Laboratory at a rate of approximately 1 in 25 samples for external QA/QC. ALS Minerals also provide internal QA/QC on sample preparation and analytical procedures, using internal standards, duplicates and blanks.

About Copper North

Copper North is a Canadian mineral exploration and development company. Copper North’s mineral resource assets include the Carmacks Copper Project located in the Yukon, and the high-grade, stratiform-copper Redstone Property, located in the Northwest Territories. Copper North trades on the TSX Venture Exchange under the symbol COL. Please visit www.coppernorthmining.com.

On behalf of the Board of Directors:

“Sally L. Eyre”

Dr. Sally L. Eyre
President, CEO and Director

For Further Information:
Peter Oates, Manager, Investor Relations

Tel: 604.638.2505
Email: info@coppernorthmining.com
Web: www.coppernorthmining.com

This news release includes certain forward-looking information or forward-looking statements for the purposes of applicable securities laws. These statements include, among others, statements with respect
to proposed exploration and development activities and their timing, potential mineralization and the announcement of results. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors, which may cause the actual results, performance or achievements to differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from the Company’s expectations include, among others, the timing and success of future exploration and development activities, exploration and development risks, market prices, exploitation and exploration results, availability of capital and financing, general economic, market or business conditions, uninsured risks, regulatory changes, defects in title, availability of personnel, materials and equipment, timeliness of government approvals, unanticipated environmental impacts on operations and other exploration risks detailed herein and from time to time in the filings made by the Company with securities regulators. In making the forward-looking statements, the Company has applied several material assumptions including, but not limited to, the assumptions that the proposed exploration and development of the mineral projects will proceed as planned, market fundamentals will result in sustained metals and mineral prices, and any additional financing needed will be available on reasonable terms. The Company expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events or otherwise except as otherwise required by applicable securities legislation.